Recent advances in robotics are pushing real-world autonomy, enabling robots to perform long-term and large-scale missions. A crucial component for successful missions is the incorporation of loop closures through place recognition, which effectively mitigates accumulated pose estimation drift. Despite computational advancements, optimizing performance for real-time deployment remains challenging, especially in resource-constrained mobile robots and multi-robot systems since, conventional keyframe sampling practices in place recognition often result in retaining redundant information or overlooking relevant data, as they rely on fixed sampling intervals or work directly in the 3D space instead of the feature space. To address these concerns, we introduce the concept of sample space in place recognition and demonstrate how different sampling techniques affect the query process and overall performance. We then present a novel keyframe sampling approach for LiDAR-based place recognition, which focuses on redundancy minimization and information preservation in the hyper-dimensional descriptor space. This approach is applicable to both learning-based and handcrafted descriptors, and through the experimental validation across multiple datasets and descriptor frameworks, we demonstrate the effectiveness of our proposed method, showing it can jointly minimize redundancy and preserve essential information in real-time. The proposed approach maintains robust performance across various datasets without requiring parameter tuning, contributing to more efficient and reliable place recognition for a wide range of robotic applications.
翻译:暂无翻译