Due to the complex and changing interactions in dynamic scenarios, motion forecasting is a challenging problem in autonomous driving. Most existing works exploit static road graphs to characterize scenarios and are limited in modeling evolving spatio-temporal dependencies in dynamic scenarios. In this paper, we resort to dynamic heterogeneous graphs to model the scenario. Various scenario components including vehicles (agents) and lanes, multi-type interactions, and their changes over time are jointly encoded. Furthermore, we design a novel heterogeneous graph convolutional recurrent network, aggregating diverse interaction information and capturing their evolution, to learn to exploit intrinsic spatio-temporal dependencies in dynamic graphs and obtain effective representations of dynamic scenarios. Finally, with a motion forecasting decoder, our model predicts realistic and multi-modal future trajectories of agents and outperforms state-of-the-art published works on several motion forecasting benchmarks.
翻译:由于动态情景中的复杂和不断变化的互动关系,动态预测是自主驾驶方面一个具有挑战性的问题。大多数现有作品利用静态路图来描述各种情景,在动态情景中,对不断变化的时空依赖性进行建模有限。在本文中,我们采用动态多变图来模拟这些情景。各种情景组成部分,包括车辆(试剂)和车道、多类型互动及其随时间变化,都是共同编码的。此外,我们设计了一个新型的多变形图形循环网络,汇集各种互动信息并捕捉其演变过程,以学习在动态图表中利用内在的时空依赖性,并获得动态情景的有效描述。最后,通过运动预测分解器,我们的模型预测了各种动态和多模式的未来轨迹,以及一些动态预测基准的超常态、超常状态的动态预测工作。</s>