Randomness is an unavoidable part of training deep learning models, yet something that traditional training data attribution algorithms fail to rigorously account for. They ignore the fact that, due to stochasticity in the initialisation and batching, training on the same dataset can yield different models. In this paper, we address this shortcoming through introducing distributional training data attribution (d-TDA), the goal of which is to predict how the distribution of model outputs (over training runs) depends upon the dataset. Intriguingly, we find that influence functions (IFs), a popular data attribution tool, are 'secretly distributional': they emerge from our framework as the limit to unrolled differentiation, without requiring restrictive convexity assumptions. This provides a new perspective on the effectiveness of IFs in deep learning. We demonstrate the practical utility of d-TDA in experiments, including improving data pruning for vision transformers and identifying influential examples with diffusion models.
翻译:随机性是深度学习模型训练中不可避免的一部分,然而传统的训练数据归因算法未能严格考虑这一点。它们忽略了由于初始化和批处理的随机性,在同一数据集上训练可能产生不同模型的事实。本文通过引入分布式训练数据归因(d-TDA)来解决这一缺陷,其目标是预测模型输出分布(在多次训练运行中)如何依赖于数据集。有趣的是,我们发现影响函数(IFs)这一流行的数据归因工具“本质上是分布式的”:它们在我们的框架中作为展开微分的极限出现,无需限制性的凸性假设。这为理解IFs在深度学习中的有效性提供了新的视角。我们在实验中展示了d-TDA的实际效用,包括改进视觉Transformer的数据剪枝以及识别扩散模型中的有影响力样本。