The Reactive Optimal Power Flow (ROPF) problem consists in computing an optimal power generation dispatch for an alternating current transmission network that respects power flow equations and operational constraints. Some means of action on the voltage are modelled in the ROPF problem such as the possible activation of shunts, which implies discrete variables. The ROPF problem belongs to the class of nonconvex MINLPs (Mixed-Integer Nonlinear Problems), which are NP-hard problems. In this paper, we solve three new variants of the ROPF problem by using a semidefinite optimization-based Branch-and-Bound algorithm. We present results on MATPOWER instances and we show that this method can solve to global optimality most instances. On the instances not solved to optimality, our algorithm is able to find solutions with a value better than the ones obtained by a rounding algorithm. We also demonstrate that applying an appropriate clique merging algorithm can significantly speed up the resolution of semidefinite relaxations of ROPF large instances.
翻译:Reactive Oppimal Power Flow (ROPF) 问题在于为一个尊重电流方程式和运行限制的交替当前传输网络计算最佳发电发送方式。 电压的一些行动手段仿照了ROPF问题, 例如可能激活离散变量。 ROPF问题属于非covex MINLP( 混合- Integer Nunlinear Problems) 类, 它们是NP- 硬问题 。 在本文中, 我们通过使用半定式优化的分支和组合算法解决三种新的ROPF问题。 我们在 MATPOWER 实例中展示了这个方法可以解决全球最佳化的多数实例。 在未解决到最佳化的案例中, 我们的算法能够找到比圆算法获得的更好价值的解决方案。 我们还表明, 应用适当的组合算法可以大大加快对 ROPFPF 大型实例的半定调制的解算法的解决速度。