The assessment of the perceptual quality of digital images is becoming increasingly important as a result of the widespread use of digital multimedia devices. Smartphones and high-speed internet are just two examples of technologies that have multiplied the amount of multimedia content available. Thus, obtaining a representative dataset, which is required for objective quality assessment training, is a significant challenge. The Blind Image Quality Assessment Database, BIQ2021, is presented in this article. By selecting images with naturally occurring distortions and reliable labeling, the dataset addresses the challenge of obtaining representative images for no-reference image quality assessment. The dataset consists of three sets of images: those taken without the intention of using them for image quality assessment, those taken with intentionally introduced natural distortions, and those taken from an open-source image-sharing platform. It is attempted to maintain a diverse collection of images from various devices, containing a variety of different types of objects and varying degrees of foreground and background information. To obtain reliable scores, these images are subjectively scored in a laboratory environment using a single stimulus method. The database contains information about subjective scoring, human subject statistics, and the standard deviation of each image. The dataset's Mean Opinion Scores (MOS) make it useful for assessing visual quality. Additionally, the proposed database is used to evaluate existing blind image quality assessment approaches, and the scores are analyzed using Pearson and Spearman's correlation coefficients. The image database and MOS are freely available for use and benchmarking.


翻译:由于广泛使用数字多媒体设备,对数字图像的认知质量的评估变得越来越重要。智能手机和高速互联网只是使多媒体内容数量成倍增加的技术的两个例子。因此,获得具有代表性的数据集是一项重大挑战,这是客观质量评估培训所需要的。在本篇文章中介绍了盲人图像质量评估数据库,BIQ2021。通过选择具有自然发生的扭曲和可靠标签的图像,该数据集解决了获取具有代表性的图像以进行无参照图像质量评估的挑战。数据集包含三套图像:那些没有打算使用这些图像进行图像质量评估的图像,那些是有意引入自然扭曲的,以及那些从开放源共享图像平台获取的数据集。试图维持从各种设备中收集的各种图像,包含不同类型的对象,以及不同程度的地面和背景资料。为了获得可靠的评分,这些图像在实验室环境中使用单一的刺激方法主观评分。数据库包含关于主观评分、人类主题统计以及每个图像的标准偏差的信息,那些是有意引入的自然扭曲的,那些从公开源共享图像平台上采集的数据集。使用数据S的现有质量和图像评分数是用于评估的图像质量和性别评析数据库。使用的现有数据质量和图像评析。使用现有评分数据库。数据是用于现有质量和图像评析。

0
下载
关闭预览

相关内容

ACM 国际多媒体大会(英文名称:ACM Multimedia,简称:ACM MM)是多媒体领域的顶级国际会议,每年举办一次。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员