Quantile regression permits describing how quantiles of a scalar response variable depend on a set of predictors. Because a unique definition of multivariate quantiles is lacking, extending quantile regression to multivariate responses is somewhat complicated. In this paper, we describe a simple approach based on a two-step procedure: in the first step, quantile regression is applied to each response separately; in the second step, the joint distribution of the signs of the residuals is modeled through multinomial regression. The described approach does not require a multidimensional definition of quantiles, and can be used to capture important features of a multivariate response and assess the effects of covariates on the correlation structure. We apply the proposed method to analyze two different datasets.
翻译:量化回归允许描述一个卡路里响应变量的四分位数如何取决于一组预测值。 因为缺少多变量化的独特定义, 将四分位回归扩展至多变响应有些复杂。 在本文中, 我们描述基于两步程序的简单方法: 在第一步, 将四分位回归分别适用于每个响应; 在第二步, 剩余符号的联合分布通过多数值回归模式进行模型化。 描述的方法不需要对量化进行多层面定义, 并且可以用来捕捉多变量响应的重要特征, 并评估共变对相关结构的影响。 我们应用了拟议方法来分析两个不同的数据集 。