Given a nonparametric Hidden Markov Model (HMM) with two states, the question of constructing efficient multiple testing procedures is considered, treating one of the states as an unknown null hypothesis. A procedure is introduced, based on nonparametric empirical Bayes ideas, that controls the False Discovery Rate (FDR) at a user--specified level. Guarantees on power are also provided, in the form of a control of the true positive rate. One of the key steps in the construction requires supremum--norm convergence of preliminary estimators of the emission densities of the HMM. We provide the existence of such estimators, with convergence at the optimal minimax rate, for the case of a HMM with $J\ge 2$ states, which is of independent interest.


翻译:鉴于与两个州有非对称的隐藏马克夫模式(HMM),考虑建立高效的多重测试程序的问题,将其中一个州视为未知的无效假设;根据非对称经验性贝ys理念,引入了一个程序,在用户指定水平上控制假发现率(FDR),还以控制真实正率的形式提供权力保障;建设中的关键步骤之一要求HMM排放密度初步估计者达到最高标准-中枢。 我们提供这种估计者的存在,以最优的迷你速率统一,对于HMM和2美元州的情况,HMM和2美元是独立感兴趣的州。

0
下载
关闭预览

相关内容

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 其是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型。
专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS 2020】近似推断进展,272页ppt
专知会员服务
32+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
26+阅读 · 2020年9月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2021年3月7日
Loss Estimators Improve Model Generalization
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS 2020】近似推断进展,272页ppt
专知会员服务
32+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
26+阅读 · 2020年9月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员