Media framing bias can lead to increased political polarization, and thus, the need for automatic mitigation methods is growing. We propose a new task, a neutral summary generation from multiple news headlines of the varying political leanings to facilitate balanced and unbiased news reading. In this paper, we first collect a new dataset, obtain insights about framing bias through a case study, and propose a new effective metric and models for the task. Lastly, we conduct experimental analyses to provide insights about remaining challenges and future directions. One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
翻译:媒体的偏见可能导致政治两极分化的加剧,因此,自动缓解方法的需要正在增加。我们提议了一项新的任务,即从不同政治倾向的多条新闻头条新闻标题中中立地摘要生成,以促进均衡和不偏不倚的新闻阅读。在本文中,我们首先收集了一套新的数据集,通过案例研究获得关于设置偏见的洞察力,并为这项任务提出了一套新的有效指标和模式。最后,我们进行了实验性分析,以提供关于其余挑战和未来方向的洞察力。最有趣的观察之一是,新一代模型不仅可以想象到事实上的不准确或无法核实的内容,而且可以想象到政治偏见的内容。