In this paper, we develop a novel unfitted multiscale framework that combines two separate scales represented by only one single computational mesh. Our framework relies on a mixed zooming technique where we zoom at regions of interest to capture microscale properties and then mix the micro and macroscale properties in a transition region. Furthermore, we use homogenization techniques to derive macro model material properties. The microscale features are discretized using CutFEM. The transition region between the micro and macroscale is represented by a smooth blending function. To address the issues with ill-conditioning of the multiscale system matrix due to the arbitrary intersections in cut elements and the transition region, we add stabilization terms acting on the jumps of the normal gradient (ghost-penalty stabilization). We show that our multiscale framework is stable and is capable to reproduce mechanical responses for heterogeneous structures in a mesh-independent manner. The efficiency of our methodology is exemplified by 2D and 3D numerical simulations of linear elasticity problems.
翻译:在本文中,我们开发了一个新颖的不适宜多尺度框架, 将两个单独的尺度( 只有一个计算网) 合并在一起。 我们的框架依赖于混合缩放技术, 我们放大感兴趣的区域以捕捉微尺度属性, 然后混合过渡区域的微尺度和宏观属性。 此外, 我们使用同质化技术来得出宏观模型材料属性。 微尺度特征使用 CutFEM 进行分解。 微尺度和宏观尺度之间的过渡区域代表着一种平稳的混合功能。 为了解决由于截断元素和转型区域的任意交叉而导致多尺度系统矩阵不适应的问题, 我们在正常梯度的跳跃中添加了稳定条件( 宿主- 侧形稳定 ) 。 我们显示, 我们的多尺度框架是稳定的, 并且能够以不独立的方式复制混合结构的机械反应。 我们的方法效率以线性弹性问题的 2D 和 3D 数字模拟为示例。