Deep reinforcement learning (DRL) is vulnerable to adversarial perturbations. Adversaries can mislead the policies of DRL agents by perturbing the state of the environment observed by the agents. Existing attacks are feasible in principle, but face challenges in practice, either by being too slow to fool DRL policies in real time or by modifying past observations stored in the agent's memory. We show that Universal Adversarial Perturbations (UAP), independent of the individual inputs to which they are applied, can fool DRL policies effectively and in real time. We introduce three attack variants leveraging UAP. Via an extensive evaluation using three Atari 2600 games, we show that our attacks are effective, as they fully degrade the performance of three different DRL agents (up to 100%, even when the $l_\infty$ bound on the perturbation is as small as 0.01). It is faster than the frame rate (60 Hz) of image capture and considerably faster than prior attacks ($\approx 1.8$ms). Our attack technique is also efficient, incurring an online computational cost of $\approx 0.027$ms. Using two tasks involving robotic movement, we confirm that our results generalize to complex DRL tasks. Furthermore, we demonstrate that the effectiveness of known defenses diminishes against universal perturbations. We introduce an effective technique that detects all known adversarial perturbations against DRL policies, including all universal perturbations presented in this paper.


翻译:深度强化学习( DRL) 容易受到对抗性干扰。 反向研究可以通过干扰代理人观察到的环境状况来误导DRL代理商的政策。 现有的袭击原则上是可行的, 但在实践中却面临挑战, 要么是过于缓慢, 无法实时愚弄 DRL 政策, 要么是修改过去存储在代理人记忆中的观测结果。 我们显示, 独立于应用的单个投入的通用反向干扰( UAP) 能够有效和实时地愚弄 DRL 政策。 我们引入了三个利用 UAP 的进攻变体。 我们使用3个 Atari 2600 游戏进行广泛的评估, 显示我们的攻击是有效的, 因为它们完全降低了DRL 3 不同代理商的性能( 高达100 %, 即便受干扰的美元约束的美元比 0.01 还要小 ) 。 我们的图像捕获框架率( 60 Hz ) 和远比先前的攻击速度( $Approx 1. 8 mms ) 。 我们的攻击技术也非常高效, 使得在线计算成本, 包括 $\ palalalalalalalalalalalationalationalation resmission lexalal ex ex ex exx exx exxxx 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员