Due to the complex layouts of documents, it is challenging to extract information for documents. Most previous studies develop multimodal pre-trained models in a self-supervised way. In this paper, we focus on the embedding learning of word blocks containing text and layout information, and propose UTel, a language model with Unified TExt and Layout pre-training. Specifically, we propose two pre-training tasks: Surrounding Word Prediction (SWP) for the layout learning, and Contrastive learning of Word Embeddings (CWE) for identifying different word blocks. Moreover, we replace the commonly used 1D position embedding with a 1D clipped relative position embedding. In this way, the joint training of Masked Layout-Language Modeling (MLLM) and two newly proposed tasks enables the interaction between semantic and spatial features in a unified way. Additionally, the proposed UTel can process arbitrary-length sequences by removing the 1D position embedding, while maintaining competitive performance. Extensive experimental results show UTel learns better joint representations and achieves superior performance than previous methods on various downstream tasks, though requiring no image modality. Code is available at \url{https://github.com/taosong2019/UTel}.


翻译:由于文件的复杂布局,为文件提取信息具有挑战性。大多数以往的研究都以自我监督的方式开发多式预培训模型。在本文中,我们侧重于嵌入含有文本和布局信息的字块学习,并提议使用UTel(一种语言模型,配有统一 TExt 和布局预培训)。具体地说,我们提议了两项培训前任务:用于布局学习的环绕字形预测(SWP)和用于查找不同字形块的单词嵌入(CWE)对比学习。此外,我们用1D剪接相对位置嵌入的通用1D位置替换了通常使用的 1D 位置。通过这种方式,对MDLLLM(MLM) 和两个新提议的任务进行联合培训,使得语义和空间特征之间能够以统一的方式互动。此外,拟议的UTel(S)可以通过删除1D 位置嵌入,同时保持竞争性的性能。广度实验结果显示UTel在各种下游任务上比以往的方法学习更好的联合表现并取得优异性业绩,但不需要图像模式。 aml/com 。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员