Vertex splitting replaces a vertex by two copies and partitions its incident edges amongst the copies. This problem has been studied as a graph editing operation to achieve desired properties with as few splits as possible, most often planarity, for which the problem is NP-hard. Here we study how to minimize the number of splits to turn a plane graph into an outerplane one. We tackle this problem by establishing a direct connection between splitting a plane graph to outerplanarity, finding a connected face cover, and finding a feedback vertex set in its dual. We prove NP-completeness for plane biconnected graphs, while we show that a polynomial-time algorithm exists for maximal planar graphs. Finally, we provide upper and lower bounds for certain families of maximal planar graphs.
翻译:顶点分割法以两个副本取代一个顶点, 并将事件边缘分隔在两个副本中。 这个问题已被作为图表编辑操作来研究, 以尽可能少的分割方式实现理想的属性, 最常见的是计划性, 问题在于 NP- 硬。 在这里我们研究如何将分割数最小化, 将平面图转换成外平面图 。 我们通过在将平面图分割成外平面平面平面、 找到相连接的面覆盖和 找到双倍的反馈顶点之间建立直接联系来解决这个问题 。 我们证明平面双连接图的NP- 完全性, 同时我们显示对最大平面平面图存在一个多边时算法 。 最后, 我们为顶点平面图的某些家族提供了上下限 。