Statistical modeling of monthly, seasonal, or annual total rainfall is a crucial area of research in meteorology, mainly from the perspective of rainfed agriculture, where a proper assessment of the future availability of rainwater is necessary. The rainfall amount during a wet period can take any positive value and some simple (one or two-parameter) probability models supported over the positive real line that are generally used for rainfall modeling are exponential, gamma, Weibull, lognormal, Pearson Type-V/VI, log-logistic, etc., where the unknown model parameters are routinely estimated using the maximum likelihood estimator (MLE). However, the presence of outliers or extreme observations is a common issue in rainfall data and the MLEs being highly sensitive to them often leads to spurious inference. Here, we discuss a robust parameter estimation approach based on the minimum density power divergence estimator (MDPDE). We fit the above four parametric models to the areally-weighted monthly rainfall data from the 36 meteorological subdivisions of India for the years 1951-2014 and compare the fits based on MLE and the proposed optimum MDPDE; the superior performance of MDPDE is showcased for several cases. For all month-subdivision combinations, we discuss the best-fit models and the estimated median rainfall amounts.
翻译:摘要:月、季或年总降雨的统计建模是气象学研究的重要领域,主要从雨养农业的角度考虑,在那里,对未来雨水可用性的适当评估是必要的。在湿润期间的降雨量可以取任何正值,并且通常用于降雨建模的一些简单(一或两个参数)概率模型,支持正实数线,例如指数,伽马,威布尔,对数正态,Pearson V / VI型,对数逻辑等,其中未知的模型参数通常使用最大似然估计器(MLE)进行估计。然而,极值或异常观测值的存在是降雨数据中的常见问题,而MLE对它们高度敏感,经常导致虚假推断。在这里,我们讨论了一种基于最小密度功率差异估计器(MDPDE)的稳健参数估计方法。我们将上述四个参数模型拟合到印度36个气象分区1951-2014年的月降雨数据中,并比较了基于MLE和提议的最优MDPDE的拟合;展示了MDPDE在几种情况下的优越性能。对于所有月份-分区组合,我们讨论最佳拟合模型和估计的中位数降雨量。