Motivated by the framework constructed by Brugnano and Casulli $[$SIAM J. Sci. Comput. 30: 463--472, 2008$]$, we analyze the finite termination property of the generalized Netwon method (GNM) for solving the absolute value equation (AVE). More precisely, for some special matrices, GNM is terminated in at most $2n + 2$ iterations. A new result for the unique solvability and unsolvability of the AVE is obtained. Numerical experiments are given to demonstrate the theoretical analysis.
翻译:根据Brugnano和Casulli $USGIAM J. Sci. Comput. 30: 463-472, 2008美元,我们分析了通用Netwon方法(GNM)的有限终止属性,以解决绝对值方程(AVE),更确切地说,对于某些特殊矩阵,GNM最多以2美元+2美元的迭代终止。获得了AVE独有的溶解性和不溶性的新结果。为证明理论分析,进行了数值实验。