Given a graph $G=(V,E)$ with arboricity $\alpha$, we study the problem of decomposing the edges of $G$ into $(1+\epsilon)\alpha$ disjoint forests in the distributed LOCAL model. Barenboim and Elkin [PODC `08] gave a LOCAL algorithm that computes a $(2+\epsilon)\alpha$-forest decomposition using $O(\frac{\log n}{\epsilon})$ rounds. Ghaffari and Su [SODA `17] made further progress by computing a $(1+\epsilon) \alpha$-forest decomposition in $O(\frac{\log^3 n}{\epsilon^4})$ rounds when $\epsilon \alpha = \Omega(\sqrt{\alpha \log n})$, i.e. the limit of their algorithm is an $(\alpha+ \Omega(\sqrt{\alpha \log n}))$-forest decomposition. This algorithm, based on a combinatorial construction of Alon, McDiarmid \& Reed [Combinatorica `92], in fact provides a decomposition of the graph into \emph{star-forests}, i.e. each forest is a collection of stars. Our main result in this paper is to reduce the threshold of $\epsilon \alpha$ in $(1+\epsilon)\alpha$-forest decomposition and star-forest decomposition. This further answers the $10^{\text{th}}$ open question from Barenboim and Elkin's "Distributed Graph Algorithms" book. Moreover, it gives the first $(1+\epsilon)\alpha$-orientation algorithms with {\it linear dependencies} on $\epsilon^{-1}$. At a high level, our results for forest-decomposition are based on a combination of network decomposition, load balancing, and a new structural result on local augmenting sequences. Our result for star-forest decomposition uses a more careful probabilistic analysis for the construction of Alon, McDiarmid, \& Reed; the bounds on star-arboricity here were not previously known, even non-constructively.


翻译:以平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方正平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方正平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方

0
下载
关闭预览

相关内容

专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
26+阅读 · 2021年4月2日
最新《图神经网络知识图谱补全》综述论文
专知会员服务
156+阅读 · 2020年7月29日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Github项目推荐 | 图神经网络(GNN)相关资源大列表
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Github项目推荐 | 图神经网络(GNN)相关资源大列表
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员