In this work, we study the limitations of the Quantum Approximate Optimization Algorithm (QAOA) through the lens of statistical physics and show that there exists $\epsilon > 0$, such that $\epsilon\log(n)$ depth QAOA cannot arbitrarily-well approximate the ground state energy of random diluted $k$-spin glasses when $k\geq4$ is even. This is equivalent to the weak approximation resistance of logarithmic depth QAOA to the \kxors\ problem. We further extend the limitation to other boolean constraint satisfaction problems as long as the problem satisfies a combinatorial property called the coupled overlap-gap property (OGP) [Chen et al., Annals of Probability, 47(3), 2019]. As a consequence of our techniques, we confirm a conjecture of Brandao et al. [arXiv:1812.04170, 2018] asserting that the landscape independence of QAOA extends to logarithmic depth---in other words, for every fixed choice of QAOA angle parameters, the algorithm at logarithmic depth performs almost equally well on almost all instances. Our results provide a new way to study the power and limit of QAOA through statistical physics methods and combinatorial properties.
翻译:在这项工作中,我们通过统计物理学的透镜研究Quantum Aprear Apropimization Alogorithm(QAOA)的局限性,并表明存在美元=epsilon > 0$(n) 深度$ QAOA(n) 深度$\ epsilon\log(n) QAOA(n) 深度$ QAOA(n) ) 的局限性,因此,当美元=ge4美元时,我们无法任意地非常接近随机稀释美元- spin眼镜的地面状态能量。这相当于对数深度 QAOA(QA) 的近似近似阻力阻力。只要问题能满足称为同时重叠- gap 属性(OGP) 的组合属性(OGP) [Chen et al.,47(3), 20199] 美元为我们的技巧,我们确认Brandao et al.[arXiv:1812.04170, 2018] 2018] 表示QAAA(QAA的地貌独立度延伸至对地貌深度的地表深度限制, 几乎- 深度A(OA) A 的深度的深度限制,就提供了所有固定的统计结果的每个方向的测算结果的测程的测程的测程的测程的测程的每个结果。