Semantic segmentation of fine-resolution urban scene images plays a vital role in extensive practical applications, such as land cover mapping, urban change detection, environmental protection and economic assessment. Driven by rapid developments in deep learning technologies, the convolutional neural network (CNN) has dominated the semantic segmentation task for many years. Convolutional neural networks adopt hierarchical feature representation, demonstrating strong local information extraction. However, the local property of the convolution layer limits the network from capturing global context that is crucial for precise segmentation. Recently, Transformer comprise a hot topic in the computer vision domain. Transformer demonstrates the great capability of global information modelling, boosting many vision tasks, such as image classification, object detection and especially semantic segmentation. In this paper, we propose an efficient hybrid Transformer (EHT) for real-time urban scene segmentation. The EHT adopts a hybrid structure with and CNN-based encoder and a transformer-based decoder, learning global-local context with lower computation. Extensive experiments demonstrate that our EHT has faster inference speed with competitive accuracy compared with state-of-the-art lightweight models. Specifically, the proposed EHT achieves a 66.9% mIoU on the UAVid test set and outperforms other benchmark networks significantly. The code will be available soon.
翻译:细分辨率城市景象的静默分解在广泛的实际应用中发挥着至关重要的作用,如土地覆盖测绘、城市变化探测、环境保护和经济评估等。受深层学习技术的迅速发展驱动,超演神经网络多年来一直主导着语义分解任务。 超演神经网络采用分级特征代表制,展示了强烈的地方信息提取。 然而,卷发层的当地特性限制了网络捕捉全球背景,而这种背景对于精确分解至关重要。最近,变形器在计算机视野域中是一个热题。变形器展示了全球信息建模的巨大能力,提升了许多视觉任务,如图像分类、物体探测,特别是语义分解。在本文中,我们提出了高效的混合变形器(EHT)用于实时城市场分解任务。 电动神经网络采用混合结构,配有CNN的编码和基于变形器的分解器,学习了更精确分解器。 广泛实验显示,我们的EHT具有较快的推导速度,与具有竞争力的精确度,比有图像分类、物体探测、特别是测试型六十六号的EHI将很快地实现其他测试型模型。