We develop a uniform coalgebraic approach to Thomason and J\'onsson-Tarski type dualities for various classes of neighborhood frames and neighborhood algebras. In the first part of the paper we construct an endofunctor on the category of complete and atomic Boolean algebras that is dual to the double powerset functor on $\mathsf{Set}$. This allows us to show that Thomason duality for neighborhood frames can be viewed as an algebra-coalgebra duality. We generalize this approach to any class of algebras for an endofunctor presented by one-step axioms in the language of infinitary modal logic. As a consequence, we obtain a uniform approach to dualities for various classes of neighborhood frames, including monotone neighborhood frames, pretopological spaces, and topological spaces. In the second part of the paper we develop a coalgebraic approach to J\'{o}nsson-Tarski duality for neighborhood algebras and descriptive neighborhood frames. We introduce an analogue of the Vietoris endofunctor on the category of Stone spaces and show that descriptive neighborhood frames are isomorphic to coalgebras for this endofunctor. This allows us to obtain a coalgebraic proof of the duality between descriptive neighborhood frames and neighborhood algebras. Using one-step axioms in the language of finitary modal logic, we restrict this duality to other classes of neighborhood algebras studied in the literature, including monotone modal algebras and contingency algebras. We conclude the paper by connecting the two types of dualities via canonical extensions, and discuss when these extensions are functorial.
翻译:我们为Thomason 和 J\'onsson-Tarski 开发了一种统一的煤星格方法, 用于不同类别的邻里框架和邻里代数。 在文件的第一部分, 我们为完整和原子布伦代代数类构建一个端点, 这是美元上的双功分点的双重功能。 这让我们可以显示, 邻里框架的Thomason 双重性可以被视为一个代数- coalge- 双向性。 我们将这一方法推广到任何类别的代数的代数, 由一步的直径逻辑和邻里代代数所呈现的内分数。 由此, 我们在完整和原子代数逻辑的类别中构建了一个端端端端端端端点的端点值。 在两个代数的代数中, 我们将一个越共代代代数的代数代数的代数代数代数代数代数代数代数的代数的代数的代数的代数 代数的代数的代数 代数 代数 代数 代数 代数 代数 代数 代数 代代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代数 代积 代数 代数 代数 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代