Explainability is highly-desired in Machine Learning (ML) systems supporting high-stakes policy decisions in areas such as health, criminal justice, education, and employment. While the field of explainable ML has expanded in recent years, much of this work has not taken real-world needs into account. A majority of proposed methods are designed with \textit{generic} explainability goals without well-defined use-cases or intended end-users and evaluated on simplified tasks, benchmark problems/datasets, or with proxy users (e.g., AMT). We argue that these simplified evaluation settings do not capture the nuances and complexities of real-world applications. As a result, the applicability and effectiveness of this large body of theoretical and methodological work in real-world applications are unclear. In this work, we take steps toward addressing this gap for the domain of public policy. First, we identify the primary use-cases of explainable ML within public policy problems. For each use case, we define the end-users of explanations and the specific goals the explanations have to fulfill. Finally, we map existing work in explainable ML to these use-cases, identify gaps in established capabilities, and propose research directions to fill those gaps to have a practical societal impact through ML. The contribution is 1) a methodology for explainable ML researchers to identify use cases and develop methods targeted at them and 2) using that methodology for the domain of public policy and giving an example for the researchers on developing explainable ML methods that result in real-world impact.


翻译:支持保健、刑事司法、教育和就业等领域高度决策的机器学习系统非常希望解释性。虽然近年来可解释性ML领域有所扩大,但许多这项工作没有考虑到现实世界的需要。大多数拟议方法的设计都采用了“textit{generic}”解释性目标,没有明确界定的使用案例或预期最终用户,也没有对简化任务、基准问题/数据集或代理用户(例如AMT)进行评价。我们认为,这些简化的评估环境没有反映真实世界应用的细微和复杂性。最后,我们绘制了实际世界应用中这一庞大的理论和方法工作的可适用性和有效性不明确。在这项工作中,我们采取步骤解决公共政策领域的这一差距。首先,我们确定了公共政策问题中可解释性ML的主要使用案例,对简化任务、基准问题/数据集的最终用户和解释必须达到的具体目标。最后,我们用“ML”来说明现有工作,用“ML”来解释实际政策方法,通过“ML”来说明这些研究方法,通过“ML”来解释这些差距和解释这些差距和解释性目标。我们用“ML”来说明现有工作,用“ML”来解释这些方法,通过“ML”来解释性研究方法,通过“ML”来解释这些差距和“ML”来解释性案例。我们用实例,为“ML”来说明这些差距和“ML”来说明这些差距和“M”解释性分析方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员