We present a novel learning algorithm for action prediction and local navigation for autonomous driving. Our approach classifies the driver behavior of other vehicles or road-agents (aggressive or conservative) and takes that into account for decision making and safe driving. We present a behavior-driven simulator that can generate trajectories corresponding to different levels of aggressive behaviors and use our simulator to train a policy using graph convolutional networks. We use a reinforcement learning-based navigation scheme that uses a proximity graph of traffic agents and computes a safe trajectory for the ego-vehicle that accounts for aggressive driver maneuvers such as overtaking, over-speeding, weaving, and sudden lane changes. We have integrated our algorithm with OpenAI gym-based "Highway-Env" simulator and demonstrate the benefits in terms of improved navigation in different scenarios.
翻译:我们展示了一种新型的行动预测和地方自动驾驶导航学习算法。我们的方法将其他车辆或道路代理人(侵略性或保守性)的驾驶者行为分类,并在决策和安全驾驶中考虑到这一点。我们展示了一种行为驱动模拟器,可以产生与不同程度的侵略行为相对应的轨迹,并使用我们的模拟器来利用图形革命网络来训练一项政策。我们使用一种强化学习导航仪,它使用一个交通代理人近距离图,并为自我驾驶器计算出一条安全轨迹,用于说明攻击性驾驶器的动作,如超载、超速、编织和突然的航道变化。我们把我们的算法与基于OpenAI的“高速-Env”体操模拟器结合起来,并展示了在不同情况下改进导航的好处。