Trajectory prediction is critical for applications of planning safe future movements and remains challenging even for the next few seconds in urban mixed traffic. How an agent moves is affected by the various behaviors of its neighboring agents in different environments. To predict movements, we propose an end-to-end generative model named Attentive Maps Encoder Network (AMENet) that encodes the agent's motion and interaction information for accurate and realistic multi-path trajectory prediction. A conditional variational auto-encoder module is trained to learn the latent space of possible future paths based on attentive dynamic maps for interaction modeling and then is used to predict multiple plausible future trajectories conditioned on the observed past trajectories. The efficacy of AMENet is validated using two public trajectory prediction benchmarks Trajnet and InD.
翻译:轨迹预测对于安全未来移动规划的应用至关重要,即使在接下来的几秒钟的城市混合交通中,也仍然具有挑战性。代理器移动如何受到不同环境中其邻国代理人的各种行为的影响。为了预测移动情况,我们提议了一个名为“Attantive Maps Encoder Net(AMENet)”的端到端基因模型,该模型将该代理器的动作和互动信息编码为准确和现实的多路径轨迹预测。一个有条件的变异自动编码器模块接受了培训,以学习基于为互动建模而留心的动态地图的未来路径的潜在空间,然后用于预测以所观察到的过去轨迹为条件的多个可信的未来轨迹。AMENet的功效通过两个公共轨道预测基准Trajnet和InD得到验证。