In highway scenarios, an alert human driver will typically anticipate early cut-in/cut-out maneuvers of surrounding vehicles using visual cues mainly. Autonomous vehicles must anticipate these situations at an early stage too, to increase their safety and efficiency. In this work, lane-change recognition and prediction tasks are posed as video action recognition problems. Up to four different two-stream-based approaches, that have been successfully applied to address human action recognition, are adapted here by stacking visual cues from forward-looking video cameras to recognize and anticipate lane-changes of target vehicles. We study the influence of context and observation horizons on performance, and different prediction horizons are analyzed. The different models are trained and evaluated using the PREVENTION dataset. The obtained results clearly demonstrate the potential of these methodologies to serve as robust predictors of future lane-changes of surrounding vehicles proving an accuracy higher than 90% in time horizons of between 1-2 seconds.


翻译:在高速公路情景中,驾驶警示的驾驶员通常会主要通过视觉提示来预测周围车辆的早期切入/切出动作。自治车辆也必须在早期阶段预测这些情况,以提高其安全和效率。在这一工作中,车道变化的识别和预测任务被作为视频动作识别问题提出来。在成功用于解决人类行动识别的四种不同的双流方法中,通过从前视摄像头中堆放视觉提示来调整,以识别和预测目标车辆的车道变化。我们研究了背景和观测前景对性能的影响,分析了不同的预测前景。不同的模型是利用预防数据集进行培训和评价的。所获得的结果清楚地表明了这些方法作为未来车道变化的稳健预测器的潜力,证明在1-2秒之间的时空前景中准确度高于90%。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
68+阅读 · 2020年2月29日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
20+阅读 · 2020年6月8日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员