Semi-algebraic proof systems such as sum-of-squares (SoS) have attracted a lot of attention recently due to their relation to approximation algorithms: constant degree semi-algebraic proofs lead to conjecturally optimal polynomial-time approximation algorithms for important NP-hard optimization problems. Motivated by the need to allow a more streamlined and uniform framework for working with SoS proofs than the restrictive propositional level, we initiate a systematic first-order logical investigation into the kinds of reasoning possible in algebraic and semi-algebraic proof systems. Specifically, we develop first-order theories that capture in a precise manner constant degree algebraic and semi-algebraic proof systems: every statement of a certain form that is provable in our theories translates into a family of constant degree polynomial calculus or SoS refutations, respectively; and using a reflection principle, the converse also holds. This places algebraic and semi-algebraic proof systems in the established framework of bounded arithmetic, while providing theories corresponding to systems that vary quite substantially from the usual propositional-logic ones. We give examples of how our semi-algebraic theory proves statements such as the pigeonhole principle, we provide a separation between algebraic and semi-algebraic theories, and we describe initial attempts to go beyond these theories by introducing extensions that use the inequality symbol, identifying along the way which extensions lead outside the scope of constant degree SoS. Moreover, we prove new results for propositional proofs, and specifically extend Berkholz's dynamic-by-static simulation of polynomial calculus (PC) by SoS to PC with the radical rule.


翻译:最近,由于与近似算法的关系,SOS等半数值校准系统等半数值校准系统最近引起了许多关注:恒定度半数值校准证据导致对重要的NP-硬优化问题进行推测性最佳的多元时近准算法。由于需要允许一个更精简和统一的框架来配合SOS的检验,而不是限制性的假设水平,我们开始对升格和半数值校准校准系统中可能的各种推理进行系统性的一级逻辑调查。具体地说,我们开发了一级理论,以精确的方式捕捉外部的常数代数半数值校准和半数值校准校准检验系统:我们理论中可辨别出的一种特定形式的说明,分别转化成一个不变度多数值计算法或SoS再解的组合;使用反省原则,也维持着对等值。在既定的初始算框架中,代数和半数值校准系统中的代数的代数级推论,明确以精确的方式捕捉到常数的代代代代代代数的推理学理论,从而从常态理论中推理判分解出了我们常态的理论的理论。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
7+阅读 · 2019年6月20日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员