We will find a lower bound on the recognition complexity of the theories that are nontrivial relative to some equivalence relation (this relation may be equality), namely, each of these theories is consistent with the formula, whose sense is that there exist two non-equivalent elements. However, at first, we will obtain a lower bound on the computational complexity for the first-order theory of Boolean algebra that has only two elements. For this purpose, we will code the long-continued deterministic Turing machine computations by the relatively short-length quantified Boolean formulae; the modified Stockmeyer and Meyer method will appreciably be used for this simulation. Then, we will transform the modeling formulae of the theory of this Boolean algebra to the simulation ones of the first-order theory of the only equivalence relation in polynomial time. Since the computational complexity of these theories is not polynomial, we obtain that the class $\mathbf{P}$ is a proper subclass of $\mathbf{PSPACE}$ (Polynomial Time is a proper subset of Polynomial Space). Keywords: Computational complexity, the theory of equality, the coding of computations, simulation by means formulae, polynomial time, polynomial space, lower complexity bound
翻译:相对于某种等同关系(这种关系可以是平等)而言,我们将会发现一个较低的界限,即承认非两等关系(这种关系可能是平等)的理论的复杂性,即,这些理论中的每一种理论都与公式一致,其感觉是存在两个非等要素。然而,首先,我们将在仅包含两个要素的布尔伦代数第一阶理论的计算复杂性方面获得较低的界限。为此,我们将用相对短长度量化的布尔林公式来编码长期连续的确定性机器计算;修改的Stockmeyer和Meyer方法将明显用于模拟。然后,我们将将这个布尔伦代数理论的模型公式转换为多元时间中唯一等关系第一阶理论的模拟公式。由于这些理论的计算复杂性不是多元性的,因此,我们将用相对短期量化的布尔伦(mathbf{PSPACE}公式的子类计算;修改后的Stockmeymeymeyal 和Meyer 方法将明显用于模拟。然后,我们将将这一布尔约代数代数的代数理论的模型的模型改成公式的模型公式的模型公式, 由聚合空间的复杂度的计算法系系系系系系系系系系。