With a sequence of regressions, one may generate joint probability distributions. One starts with a joint, marginal distribution of context variables having possibly a concentration graph structure and continues with an ordered sequence of conditional distributions, named regressions in joint responses. The involved random variables may be discrete, continuous or of both types. Such a generating process specifies for each response a conditioning set which contains just its regressor variables and it leads to at least one valid ordering of all nodes in the corresponding regression graph which has three types of edge; one for undirected dependences among context variables, another for undirected dependences among joint responses and one for any directed dependence of a response on a regressor variable. For this regression graph, there are several definitions of pairwise Markov properties, where each interprets the conditional independence associated with a missing edge in the graph in a different way. We explain how these properties arise, prove their equivalence for compositional graphoids and point at the equivalence of each one of them to the global Markov property.


翻译:使用一个回归序列, 可能会产生共同概率分布 。 首先是环境变量的组合、 边际分布, 可能是一个焦点图形结构, 继续以一个顺序顺序排列有条件分布, 并在联合响应中标出回归。 所涉及的随机变量可能是离散的、 连续的或两种类型的。 这样的生成过程为每个响应指定了一个调制组, 它只包含其递增变量, 并导致相应的回归图中至少一个有效的所有节点的排序, 该图有三种边缘; 一个是上下文变量之间的非定向依赖, 另一个是联合响应之间的非定向依赖, 还有一个是对递增变量的任何直接依赖。 对于这个回归图, 每种对马可夫属性都有几种定义, 其中每种定义都以不同的方式解释与图表中缺失的边缘相关的有条件独立。 我们解释这些属性是如何产生的, 证明组成图形的等值, 以及每个等值点与全球 Markov 属性的等值 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员