Quantum many-body systems involving bosonic modes or gauge fields have infinite-dimensional local Hilbert spaces which must be truncated to perform simulations of real-time dynamics on classical or quantum computers. To analyze the truncation error, we develop methods for bounding the rate of growth of local quantum numbers such as the occupation number of a mode at a lattice site, or the electric field at a lattice link. Our approach applies to various models of bosons interacting with spins or fermions, and also to both abelian and non-abelian gauge theories. We show that if states in these models are truncated by imposing an upper limit $\Lambda$ on each local quantum number, and if the initial state has low local quantum numbers, then an error at most $\epsilon$ can be achieved by choosing $\Lambda$ to scale polylogarithmically with $\epsilon^{-1}$, an exponential improvement over previous bounds based on energy conservation. For the Hubbard-Holstein model, we numerically compute a bound on $\Lambda$ that achieves accuracy $\epsilon$, obtaining significantly improved estimates in various parameter regimes. We also establish a criterion for truncating the Hamiltonian with a provable guarantee on the accuracy of time evolution. Building on that result, we formulate quantum algorithms for dynamical simulation of lattice gauge theories and of models with bosonic modes; the gate complexity depends almost linearly on spacetime volume in the former case, and almost quadratically on time in the latter case. We establish a lower bound showing that there are systems involving bosons for which this quadratic scaling with time cannot be improved. By applying our result on the truncation error in time evolution, we also prove that spectrally isolated energy eigenstates can be approximated with accuracy $\epsilon$ by truncating local quantum numbers at $\Lambda=\textrm{polylog}(\epsilon^{-1})$.


翻译:包含波音模式或仪表字段的量子多体系统有无限维度的局部 Hilbert 空间, 必须在古典计算机或量子计算机上模拟实时动态。 为了分析计数错误, 我们开发了方法来约束本地量数的增长率, 如在调色板站使用一种模式的占用号, 或者在拉蒂尔链接上使用电场。 我们的方法适用于各种与旋流或发酵发生互动的波子模型, 并且也适用于直线和不测的仪表理论。 我们显示, 如果这些模型中的国家通过对每个本地量数设定一个上限 $\ 兰巴达元的模拟来进行模拟实时动态动态动态动态动态动态动态动态动态动态动态动态动态动态。 初始状态有低本地量的数值, 然后在最高量点上选择 $Lambda 美元, 以调量子平价 美元, 我们无法在以往节能范围内进行指数化的指数改善。

0
下载
关闭预览

相关内容

【ETH】机器学习数学基础课程笔记, 83页pdf
专知会员服务
66+阅读 · 2021年10月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
实战 | 用Python做图像处理(二)
七月在线实验室
17+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
实战 | 用Python做图像处理(二)
七月在线实验室
17+阅读 · 2018年5月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员