Underwater imaging is a critical task performed by marine robots for a wide range of applications including aquaculture, marine infrastructure inspection, and environmental monitoring. However, water column effects, such as attenuation and backscattering, drastically change the color and quality of imagery captured underwater. Due to varying water conditions and range-dependency of these effects, restoring underwater imagery is a challenging problem. This impacts downstream perception tasks including depth estimation and 3D reconstruction. In this paper, we advance state-of-the-art in neural radiance fields (NeRFs) to enable physics-informed dense depth estimation and color correction. Our proposed method, WaterNeRF, estimates parameters of a physics-based model for underwater image formation, leading to a hybrid data-driven and model-based solution. After determining the scene structure and radiance field, we can produce novel views of degraded as well as corrected underwater images, along with dense depth of the scene. We evaluate the proposed method qualitatively and quantitatively on a real underwater dataset.
翻译:水下成像是海洋机器人在包括水产养殖、海洋基础设施检查和环境监测在内的广泛应用方面完成的一项关键任务,然而,水柱效应,例如水的减速和回落,大大改变了水下所捕捉的图像的颜色和质量。由于水的情况不同,以及这些效应的距离依赖性,恢复水下成像是一个具有挑战性的问题。这影响到下游的感知任务,包括深度估计和3D重建。在本文件中,我们推进神经光亮场(NERFs)的最新技术,以便能够进行物理知情的密集深度估计和颜色校正。我们提出的方法,WaterNERF, 水下成像物理学模型的估计参数,导致数据驱动的和基于模型的混合解决办法。在确定现场结构和光度场之后,我们可以产生退化和纠正的水下图象的新观点,同时要深得多。我们从质量和数量上评价一个真正的水下数据集的拟议方法。