Numerous process discovery techniques exist for generating process models that describe recorded executions of business processes. The models are meant to generalize executions into human-understandable modeling patterns, notably parallelism, and enable rigorous analysis of process deviations. However, well-defined models with parallelism returned by existing techniques are often too complex or generalize the recorded behavior too strongly to be trusted in a practical business context. We bridge this gap by introducing the Probabilistic Inductive Miner (PIM) based on the Inductive Miner framework. PIM compares in each step the most probable operators and structures based on frequency information in the data, which results in block-structured models with significantly higher accuracy. All design choices in PIM are based on business context requirements obtained through a user study with industrial process mining experts. PIM is evaluated quantitatively and in an novel kind of empirical study comparing users' trust in discovered model structures. The evaluations show that PIM strikes a unique trade-off between model accuracy and model complexity, that is conclusively preferred by users over all state-of-the-art process discovery methods.


翻译:有许多过程发现技术可用于生成描述有记录的业务流程执行过程的流程模型。这些模型旨在将处决普遍化为人类可理解的模型模式,特别是平行模式,并能够对过程偏差进行严格分析。然而,现有技术所恢复的明确界定的平行模式往往过于复杂或过于笼统,无法在实际商业环境中信任记录的行为。我们通过采用基于诱导采矿框架的概率诱导采矿器(PIM)来弥补这一差距。PIM在每一步中根据数据中的频率信息对最可能操作者和结构进行对比,从而导致形成条块状结构模型。PIM的所有设计选择都基于通过与工业过程采矿专家的用户研究获得的商业背景要求。PIM在数量上和实验性研究中进行了评价,比较用户对所发现的模型结构的信任。评价表明,PIM在模型准确性和模型复杂度之间发生了一种独特的交易,用户确实选择了所有最先进的过程发现方法。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
44+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
13+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月4日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
3+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
44+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
13+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员