While novel computer vision architectures are gaining traction, the impact of model architectures is often related to changes or exploring in training methods. Identity mapping-based architectures ResNets and DenseNets have promised path-breaking results in the image classification task and are go-to methods for even now if the data given is fairly limited. Considering the ease of training with limited resources this work revisits the ResNets and improves the ResNet50 \cite{resnets} by using mixup data-augmentation as regularization and tuning the hyper-parameters.
翻译:虽然新的计算机视觉结构正在得到牵引,但模型结构的影响往往与培训方法的变化或探索有关。基于身份绘图的架构ResNets和DenseNets承诺在图像分类任务中取得突破性结果,即使所提供的数据相当有限,现在也成为直接采用的方法。考虑到培训的方便程度,由于资源有限,这项工作重新审视了ResNets, 并通过使用混编数据放大作为超参数的正规化和调整来改进ResNet50\cite{resnets}。