We provide algorithms to reconstruct rational ruled surfaces in three-dimensional projective space from the `apparent contour' of a single projection to the projective plane. We deal with the case of tangent developables and of general projections to $\mathbb{p}^3$ of rational normal scrolls. In the first case, we use the fact that every such surface is the projection of the tangent developable of a rational normal curve, while in the second we start by reconstructing the rational normal scroll. In both instances we then reconstruct the correct projection to $\mathbb{p}^3$ of these surfaces by exploiting the information contained in the singularities of the apparent contour.
翻译:我们提供算法,从投影平面的单一投影的“表面轮廓”中重建三维投影空间中的合理受控表面。 我们处理相切开发器和一般投影的情况, 也就是合理平面的$\ mathbb{p ⁇ {p ⁇ 3$。 在第一种情况下, 我们使用以下事实, 即每个这样的表面都是可合理正常曲线的相切开发器的投影, 而第二种情况下, 我们从重建理性平流开始。 在这两种情况下, 我们通过利用表面等同的奇特性, 将正确的投影重建为$\mathbb{p ⁇ 3$。