Virtually every sizable organization nowadays is building a form of a data lake. In theory, every department or team in the organization would enrich their datasets with metadata, and store them in a central data lake. Those datasets can then be combined in different ways and produce added value to the organization. In practice, though, the situation is vastly different: each department has its own privacy policies, data release procedures, and goals. As a result, each department maintains its own data lake, leading to data silos. For such data silos to be of any use, they need to be integrated. This paper presents SiMa, a method for federating data silos that consistently finds more correct relationships than the state-of-the-art matching methods, while minimizing wrong predictions and requiring 20x to 1000x less time to execute. SiMa leverages Graph Neural Networks (GNNs) to learn from the existing column relationships and automated data profiles found in data silos. Our method makes use of the trained GNN to perform link prediction and find new column relationships across data silos. Most importantly, SiMa can be trained incrementally on the column relationships within each silo individually, and does not require consolidating all datasets into one place.


翻译:目前几乎每个规模庞大的组织都在构建一种数据湖。理论上,每个部门或组织团队都会用元数据丰富数据集,并将其存储在中央数据湖中。这些数据集可以以不同的方式合并,为组织带来附加值。但实际上,情况大相径庭:每个部门都有自己的隐私政策、数据发布程序和目标。因此,每个部门都维持自己的数据湖,导致数据筒仓。为了让这些数据筒仓有任何用处,它们需要整合。本文展示了Sima,这是一个数据仓的联结方法,它始终发现比最新匹配方法更正确的关系,同时尽量减少错误预测,并需要20x1000x更少的时间来执行。Sima利用Sima Neural网络(GNN)从现有的列关系和数据筒仓中找到的自动数据简介学习。我们的方法是使用经过训练的GNN来进行链接预测,并找到数据筒仓之间的新专栏关系。最重要的是,Sima可以逐个地将数据关系合并到每个列内。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Debiased Recommendation with Neural Stratification
Arxiv
0+阅读 · 2022年8月15日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员