Currently, most single image dehazing models cannot run an ultra-high-resolution (UHD) image with a single GPU shader in real-time. To address the problem, we introduce the principle of infinite approximation of Taylor's theorem with the Laplace pyramid pattern to build a model which is capable of handling 4K hazy images in real-time. The N branch networks of the pyramid network correspond to the N constraint terms in Taylor's theorem. Low-order polynomials reconstruct the low-frequency information of the image (e.g. color, illumination). High-order polynomials regress the high-frequency information of the image (e.g. texture). In addition, we propose a Tucker reconstruction-based regularization term that acts on each branch network of the pyramid model. It further constrains the generation of anomalous signals in the feature space. Extensive experimental results demonstrate that our approach can not only run 4K images with haze in real-time on a single GPU (80FPS) but also has unparalleled interpretability. The developed method achieves state-of-the-art (SOTA) performance on two benchmarks (O/I-HAZE) and our updated 4KID dataset while providing the reliable groundwork for subsequent optimization schemes.
翻译:目前,大多数单一图像脱色模型无法实时运行带有单一 GPU 阴影器的超高分辨率图像(UHD) 。 为了解决这个问题,我们引入了泰勒的理论与Laplace金字塔模式无限接近的原则,以建立一个能够实时处理 4K 模糊图像的模型。 金字塔网络的N分支网络与泰勒理论中的N限制条件相对应。低级多级多级图像无法实时重建图像的低频信息(例如,颜色,光化 ) 。高阶多式多式图像回归图像的高频信息(例如,纹理 ) 。 此外,我们提议了一个基于塔克重建的正规化术语,该术语适用于金字塔模型的每个分支网络。它进一步限制了在地貌空间生成反射信号。 广泛的实验结果表明,我们的方法不仅可以在单一的 GPU( 80 FPS) 上实时运行有烟雾的4K图像, 而且还具有前所未有的可解释性能。 此外,我们开发的方法在提供可靠的州-ID 4-K 数据基础(SOTA) 提供可靠的州- 和随后的SAPLA (SATA) 提供可靠的基础数据。