We present UrbanScene3D, a large-scale data platform for research of urban scene perception and reconstruction. UrbanScene3D contains over 128k high-resolution images covering 16 scenes including large-scale real urban regions and synthetic cities with 136 km^2 area in total. The dataset also contains high-precision LiDAR scans and hundreds of image sets with different observation patterns, which provide a comprehensive benchmark to design and evaluate aerial path planning and 3D reconstruction algorithms. In addition, the dataset, which is built on Unreal Engine and Airsim simulator together with the manually annotated unique instance label for each building in the dataset, enables the generation of all kinds of data, e.g., 2D depth maps, 2D/3D bounding boxes, and 3D point cloud/mesh segmentations, etc. The simulator with physical engine and lighting system not only produce variety of data but also enable users to simulate cars or drones in the proposed urban environment for future research.
翻译:我们展示了用于研究城市景象感知和重建的大型数据平台城市Sceen3D。城市Sene3D包含超过128k的高分辨率图像,覆盖16个场景,包括大型实际城市地区和合成城市,总面积136平方公里。数据集还包含高精度的LiDAR扫描和数百个图像组,这些图像组具有不同的观测模式,为设计和评价空中路径规划和3D重建算法提供了一个全面基准。此外,数据集建在不真实的引擎和Airsim模拟器上,同时为数据集中的每座建筑配有人工加注的独特实例标签,使得能够生成各种数据,例如2D深度地图、2D/3D边框和3D点云/视断层等。物理引擎和照明系统的模拟器不仅产生各种数据,而且使用户能够在拟议城市环境中模拟汽车或无人驾驶飞机,供今后研究。