More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications. Data that we encounter often have certain embedded sparsity structures. That is, if they are represented in an appropriate basis, their energies can concentrate on a small number of basis functions. This paper is devoted to a numerical study of adaptive approximation of solutions of nonlinear partial differential equations whose solutions may have singularities, by deep neural networks (DNNs) with a sparse regularization with multiple parameters. Noting that DNNs have an intrinsic multi-scale structure which is favorable for adaptive representation of functions, by employing a penalty with multiple parameters, we develop DNNs with a multi-scale sparse regularization (SDNN) for effectively representing functions having certain singularities. We then apply the proposed SDNN to numerical solutions of the Burgers equation and the Schr\"odinger equation. Numerical examples confirm that solutions generated by the proposed SDNN are sparse and accurate.
翻译:由于应用程序中可用的数据数量越来越多,需要更胜任的学习模型来进行数据处理。我们遇到的数据往往有某些嵌入的宽度结构。也就是说,如果在适当的基础上得到体现,它们的能量可以集中在少数基本功能上。本文件专门用数字研究,通过深度神经网络(DNN),其解决方案可能具有独特性,其解决方案可能具有独特性,而该神经网络的正规化程度少,具有多个参数。注意到DNN具有一种内在的多尺度结构,它有利于功能的适应性代表,我们采用多种参数的处罚,我们开发了具有多层次、稀有的规范(SDNN)的DNN,以有效代表某些特性的功能。我们然后将拟议的SDNN应用于汉堡方程式和Schr\'odinger方程式的数字解决方案。数字实例证实,拟议的SDNNN的解决方案是稀少和准确的。