Objective: Accurate Intensive Care Unit (ICU) outcome prediction is critical for improving patient treatment quality and ICU resource allocation. Existing research mainly focuses on structured data and lacks effective frameworks to integrate clinical notes from heterogeneous electronic health records (EHRs). This study aims to explore a multimodal framework based on evidence theory that can effectively combine heterogeneous structured EHRs and free-text notes for accurate and reliable ICU outcome prediction. Materials and Methods: We proposed an evidence-based multimodal fusion framework to predict ICU outcomes, including mortality and prolonged length of stay (PLOS), by utilizing both structured EHR data and free-text notes from the MIMIC-III database. We compare the performance against baseline models that use only structured EHRs, free-text notes, or existing multimodal approaches. Results: The results demonstrate that the evidence-based multimodal fusion model achieved both accurate and reliable prediction. Specifically, it outperformed the best baseline by 1.05%/1.02% in BACC, 9.74%/6.04% in F1 score, 1.28%/0.9% in AUROC, and 6.21%/2.68% in AUPRC for predicting mortality and PLOS, respectively. Additionally, it improved the reliability of the predictions with a 26.8%/15.1% reduction in the Brier score and a 25.0%/13.3% reduction in negative log-likelihood. Conclusion: This study demonstrates that the evidence-based multimodal fusion framework can serve as a strong baseline for predictions using structured EHRs and free-text notes. It effectively reduces false positives, which can help improve the allocation of medical resources in the ICU. This framework can be further applied to analyze multimodal EHRs for other clinical tasks.
翻译:暂无翻译