ComOpT is an open-source research tool for coverage-driven testing of autonomous driving systems, focusing on planning and control. Starting with (i) a meta-model characterizing discrete conditions to be considered and (ii) constraints specifying the impossibility of certain combinations, ComOpT first generates constraint-feasible abstract scenarios while maximally increasing the coverage of k-way combinatorial testing. Each abstract scenario can be viewed as a conceptual equivalence class, which is then instantiated into multiple concrete scenarios by (1) randomly picking one local map that fulfills the specified geographical condition, and (2) assigning all actors accordingly with parameters within the range. Finally, ComOpT evaluates each concrete scenario against a set of KPIs and performs local scenario variation via spawning a new agent that might lead to a collision at designated points. We use ComOpT to test the Apollo~6 autonomous driving software stack. ComOpT can generate highly diversified scenarios with limited test budgets while uncovering problematic situations such as inabilities to make simple right turns, uncomfortable accelerations, and dangerous driving patterns. ComOpT participated in the 2021 IEEE AI Autonomous Vehicle Testing Challenge and won first place among more than 110 contending teams.
翻译:ComOpT是一个开放源码研究工具,用于自动驾驶系统覆盖驱动测试,重点是规划和控制。首先,从(一) 一个元模型,以待考虑的离散条件为特点,以及(二) 制约,具体说明某些组合的不可能性,ComOpT首先产生限制-可行的抽象假设,同时最大限度地扩大Kway组合式测试的覆盖面。每种抽象假设都可被视为概念等值类,然后通过(1) 随机选择一个符合特定地理条件的本地地图,以及(2) 给所有行为者相应分配范围内的参数。最后,ComOpT 对照一组KPI来评估每个具体情景,并通过生成可能导致指定点碰撞的新代理进行本地情景变异。我们使用ComOpT测试阿波罗 - 6 自动驱动软件堆。ComOpT 能够产生高度多样化的情景,测试预算有限,同时发现有问题的情况,如无法使指定的地理条件发生简单的转弯曲、不适快和危险的驾驶模式。ComOpT参加了2021 AI AI 自动车辆测试组之间的首次竞争。