Sum-rank-metric codes have wide applications in universal error correction and security in multishot network, space-time coding and construction of partial-MDS codes for repair in distributed storage. Fundamental properties of sum-rank-metric codes have been studied and some explicit or probabilistic constructions of good sum-rank-metric codes have been proposed. In this paper we propose three simple constructions of explicit linear sum-rank-metric codes. In finite length regime, numerous good linear sum-rank-metric codes from our construction are given. Most of them have better parameters than previous constructed sum-rank-metric codes. For example a lot of small block size better linear sum-rank-metric codes over ${\bf F}_q$ of the matrix size $2 \times 2$ are constructed for $q=2, 3, 4$. Asymptotically our constructed sum-rank-metric codes are closing to the Gilbert-Varshamov-like bound on sum-rank-metric codes for some parameters. Finally we construct a linear MSRD code over an arbitrary finite field ${\bf F}_q$ with various matrix sizes $n_1>n_2>\cdots>n_t$ satisfying $n_i \geq n_{i+1}^2+\cdots+n_t^2$ , $i=1, 2, \ldots, t-1$, for any given minimum sum-rank distance. There is no restriction on the block lengths $t$ and parameters $N=n_1+\cdots+n_t$ of these linear MSRD codes from the sizes of the fields ${\bf F}_q$.


翻译:和秩度量码在多镜头网络中的通用纠错和安全性、时空编码以及分布式存储中构造部分-MDS码的问题中有广泛应用。和秩度量码的基本性质已经得到研究,一些良好的显式或概率构造的和秩度量码已经被提出。在本文中,我们提出了三种简单的显式线性和秩度量码构造方法。在有限长度的范围内,给出了许多良好的线性和秩度量码。其中大多数码的参数优于之前构造的和秩度量码。例如,对于$q=2,3,4$,构造了许多矩阵大小为$2 \times 2$的小块大小更好的线性和秩度量码。在某些参数上,我们构造的和秩度量码在渐近意义下接近于和秩度量码的Gilbert-Varshamov类界限。最后,我们构建了一个线性MSRD码,该码在任意有限域${\bf F}_q$上具有各种矩阵大小$n_1>n_2>\cdots>n_t$,满足 $n_i \geq n_{i+1}^2+\cdots+n_t^2$,$i=1,2,\ldots,t-1$,对于任何给定的最小和秩距离。这些线性MSRD码的块长度$t$和参数$N=n_1+\cdots+n_t$没有受到来自${\bf F}_q$域大小的限制。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
32+阅读 · 2021年3月7日
【硬核书】群论,Group Theory,135页pdf
专知会员服务
127+阅读 · 2020年6月25日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
32+阅读 · 2021年3月7日
【硬核书】群论,Group Theory,135页pdf
专知会员服务
127+阅读 · 2020年6月25日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员