Learning physical systems on unstructured meshes by flat Graph neural networks (GNNs) faces the challenge of modeling the long-range interactions due to the scaling complexity w.r.t. the number of nodes, limiting the generalization under mesh refinement. On regular grids, the convolutional neural networks (CNNs) with a U-net structure can resolve this challenge by efficient stride, pooling, and upsampling operations. Nonetheless, these tools are much less developed for graph neural networks (GNNs), especially when GNNs are employed for learning large-scale mesh-based physics. The challenges arise from the highly irregular meshes and the lack of effective ways to construct the multi-level structure without losing connectivity. Inspired by the bipartite graph determination algorithm, we introduce Bi-Stride Multi-Scale Graph Neural Network (BSMS-GNN) by proposing \textit{bi-stride} as a simple pooling strategy for building the multi-level GNN. \textit{Bi-stride} pools nodes by striding every other BFS frontier; it 1) works robustly on any challenging mesh in the wild, 2) avoids using a mesh generator at coarser levels, 3) avoids the spatial proximity for building coarser levels, and 4) uses non-parametrized aggregating/returning instead of MLPs during pooling and unpooling. Experiments show that our framework significantly outperforms the state-of-the-art method's computational efficiency in representative physics-based simulation cases.


翻译:平面神经网络(GNNS)在非结构化的神经网中学习物理系统。 然而,这些工具在图形神经网络(GNNS)中远远没有被开发出来,特别是当GNNS被用于学习大规模网状物理学时。挑战来自高度不规则的网点数量和缺乏构建多层次结构的有效方法,而不失去连通性。在常规网格中,由Unet结构的双面平面神经网络(CNNs)可以通过高效的轮廓、集合和上层操作来应对这一挑战。然而,这些工具在图形神经网络(GNNS)中远为图形神经网络(GNNS)开发的简单联合战略,特别是当GNNS被用于学习大型网基物理物理物理。挑战来自高度不规则的网格和缺乏构建多层次结构结构结构结构结构结构结构结构的有效方法。在BFSAFS的直流中,我们引入双向多层结构的多层结构神经网络网络(BMS-GNNNNN)作为构建多层次 GNNNS(T)的简单联合战略战略, {BIST-stride-ride-ride-ride-ride-ride-ride-rideft) 集合框架,在Breather-cal cust-real-real-real-real-real-real cust-readal-livalbs 中,在每一个(B)中,在B)中,在BFS-real-realbislutisal-sial-sial-sial-lemental-lemental-lexal-lex)中,在每一个(B)中,在B)中,在每一个(BS-le-le-sial-le-le-le-le-le-le-le-le-le-le-le)中,在每一个-le-leabal-sial-le-le-le-le-le-leabal-le)中,在B-le-le-le-le-le)中,在B)中,在B-lex-lear-lear-lear-lex-lemental-le-le-le-le-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员