Learning physical systems on unstructured meshes by flat Graph neural networks (GNNs) faces the challenge of modeling the long-range interactions due to the scaling complexity w.r.t. the number of nodes, limiting the generalization under mesh refinement. On regular grids, the convolutional neural networks (CNNs) with a U-net structure can resolve this challenge by efficient stride, pooling, and upsampling operations. Nonetheless, these tools are much less developed for graph neural networks (GNNs), especially when GNNs are employed for learning large-scale mesh-based physics. The challenges arise from the highly irregular meshes and the lack of effective ways to construct the multi-level structure without losing connectivity. Inspired by the bipartite graph determination algorithm, we introduce Bi-Stride Multi-Scale Graph Neural Network (BSMS-GNN) by proposing \textit{bi-stride} as a simple pooling strategy for building the multi-level GNN. \textit{Bi-stride} pools nodes by striding every other BFS frontier; it 1) works robustly on any challenging mesh in the wild, 2) avoids using a mesh generator at coarser levels, 3) avoids the spatial proximity for building coarser levels, and 4) uses non-parametrized aggregating/returning instead of MLPs during pooling and unpooling. Experiments show that our framework significantly outperforms the state-of-the-art method's computational efficiency in representative physics-based simulation cases.
翻译:平面神经网络(GNNS)在非结构化的神经网中学习物理系统。 然而,这些工具在图形神经网络(GNNS)中远远没有被开发出来,特别是当GNNS被用于学习大规模网状物理学时。挑战来自高度不规则的网点数量和缺乏构建多层次结构的有效方法,而不失去连通性。在常规网格中,由Unet结构的双面平面神经网络(CNNs)可以通过高效的轮廓、集合和上层操作来应对这一挑战。然而,这些工具在图形神经网络(GNNS)中远为图形神经网络(GNNS)开发的简单联合战略,特别是当GNNS被用于学习大型网基物理物理物理。挑战来自高度不规则的网格和缺乏构建多层次结构结构结构结构结构结构结构结构的有效方法。在BFSAFS的直流中,我们引入双向多层结构的多层结构神经网络网络(BMS-GNNNNN)作为构建多层次 GNNNS(T)的简单联合战略战略, {BIST-stride-ride-ride-ride-ride-ride-ride-rideft) 集合框架,在Breather-cal cust-real-real-real-real-real-real cust-readal-livalbs 中,在每一个(B)中,在B)中,在BFS-real-realbislutisal-sial-sial-sial-lemental-lemental-lexal-lex)中,在每一个(B)中,在B)中,在每一个(BS-le-le-sial-le-le-le-le-le-le-le-le-le-le-le)中,在每一个-le-leabal-sial-le-le-le-le-le-leabal-le)中,在B-le-le-le-le-le)中,在B)中,在B-lex-lear-lear-lear-lex-lemental-le-le-le-le-