We will show how to evaluate binary decision tree traversal in the language of matrix computation motivated by \textit{QuickScorer} in \cite{lucchese2015quickscorer}. Our main contribution is a novel matrix representation of the hierarchical structure of the decision tree. And we propose some equivalent algorithms of binary decision tree traversal based on rigorous theoretical analysis. The core idea is to find the relation between the input and exit leaf node. Here we not only understand decisions without the recursive traverse but also dive into the partitioning nature of tree-based methods.
翻译:我们将展示如何用由\ cite{lucchese2015quicckscorer} 驱动的矩阵计算语言来评估二进制决定树的跨度。 我们的主要贡献是决定树的等级结构的新型矩阵代表。 我们基于严格的理论分析提出一些等效的二进制决定树跨度算法。 核心思想是找到输入和退出叶节点之间的关系。 这里我们不仅理解没有循环曲折的决定, 而且还会跳入基于树的方法的分割性质。