We consider the problem of representation and learning of causal models that encode context-specific information for discrete data. To represent such models we define the class of CStrees. This class is a subclass of staged tree models that captures context-specific information in a DAG model by the use of a staged tree, or equivalently, by a collection of DAGs. We provide a characterization of the complete set of asymmetric conditional independence relations encoded by a CStree that generalizes the global Markov property for DAGs. As a consequence, we obtain a graphical characterization of model equivalence for CStrees generalizing that of Verma and Pearl for DAG models. We also provide a closed-form formula for the maximum likelihood estimator of a CStree and use it to show that the Bayesian Information Criterion is a locally consistent score function for this model class. We then use the theory for general interventions in staged tree models to provide a global Markov property and a characterization of model equivalence for general interventions in CStrees. As examples, we apply these results to two real data sets, learning BIC-optimal CStrees for each and analyzing their context-specific causal structure.


翻译:我们考虑了将特定背景信息编码为离散数据的因果模型的代表性和学习问题。为了代表这些模型,我们定义了CStree的类别。这一类是分阶段树模型的子类,通过使用一个分阶段树或等效的DAG的集合,在DAG模型中捕捉到特定背景信息。我们提供了一套完整的非对称有条件独立关系的特征描述,由CSTree编码,该CSTree将全球马可夫属性概括为DAGs。因此,我们获得了一种图形化的CStrees模型的等同性特征,将Verma和Pearl模型概括为DAGs模型。我们还为CStree的最大可能性估计者提供了一种封闭式公式,并用它来显示Besian信息标准对于这个模型类别来说是一个本地一致的得分函数。我们然后使用一个理论用于在分阶段树模型中进行一般性干预,为CSteres的一般干预措施提供一个全球Markov属性和模型等同性特征的定性。作为示例,我们将这些结果应用于两个真实数据背景,学习BIC-opS的BIC-S结构。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员