In this work, we present an end-to-end deep learning framework for X-ray image diagnosis. As the first step, our system determines whether a submitted image is an X-ray or not. After it classifies the type of the X-ray, it runs the dedicated abnormality classification network. In this work, we only focus on the chest X-rays for abnormality classification. However, the system can be extended to other X-ray types easily. Our deep learning classifiers are based on DenseNet-121 architecture. The test set accuracy obtained for 'X-ray or Not', 'X-ray Type Classification', and 'Chest Abnormality Classification' tasks are 0.987, 0.976, and 0.947, respectively, resulting into an end-to-end accuracy of 0.91. For achieving better results than the state-of-the-art in the 'Chest Abnormality Classification', we utilize the new RAdam optimizer. We also use Gradient-weighted Class Activation Mapping for visual explanation of the results. Our results show the feasibility of a generalized online projectional radiography diagnosis system.
翻译:在这项工作中,我们提出了一个用于X光图像诊断的端到端深学习框架。 作为第一步, 我们的系统决定了所提交图像是否为X光。 在对X光进行分类后, 它运行专门的异常分类网络。 在这项工作中, 我们只关注用于异常分类的胸部X光片。 但是, 这个系统可以很容易地扩展到其他X光类型。 我们的深层学习分类基于 DenseNet-121 的架构。 为“ X光或不是”、“ X光类型分类”和“ 最异常分类” 的任务获得的测试数据集精确度分别为 0.987、 0.976 和 0. 947, 其结果为端到端精确度为 0.91 。 为了取得比“ 最异常分类” 的状态更好的结果, 我们使用新的RADAM 优化仪。 我们还使用“ 梯度加权分类活化图” 来对结果进行直观解释。 我们的结果表明, 一个通用的在线射谱分析系统的可行性。