In the context of Bayesian inversion for scientific and engineering modeling, Markov chain Monte Carlo sampling strategies are the benchmark due to their flexibility and robustness in dealing with arbitrary posterior probability density functions (PDFs). However, these algorithms been shown to be inefficient when sampling from posterior distributions that are high-dimensional or exhibit multi-modality and/or strong parameter correlations. In such contexts, the sequential Monte Carlo technique of transitional Markov chain Monte Carlo (TMCMC) provides a more efficient alternative. Despite the recent applicability for Bayesian updating and model selection across a variety of disciplines, TMCMC may require a prohibitive number of tempering stages when the prior PDF is significantly different from the target posterior. Furthermore, the need to start with an initial set of samples from the prior distribution may present a challenge when dealing with implicit priors, e.g. based on feasible regions. Finally, TMCMC can not be used for inverse problems with improper prior PDFs that represent lack of prior knowledge on all or a subset of parameters. In this investigation, a generalization of TMCMC that alleviates such challenges and limitations is proposed, resulting in a tempering sampling strategy of enhanced robustness and computational efficiency. Convergence analysis of the proposed sequential Monte Carlo algorithm is presented, proving that the distance between the intermediate distributions and the target posterior distribution monotonically decreases as the algorithm proceeds. The enhanced efficiency associated with the proposed generalization is highlighted through a series of test inverse problems and an engineering application in the oil and gas industry.
翻译:在Bayesian为科学和工程建模倒置的背景下,Markov链链Monte Carlo取样战略是基准,因为其灵活和稳健地处理任意的事后概率密度功能(PDFs),但这些算法被证明是低效的,不过,如果从高尺寸或具有多式和/或强度参数相关性的后部分布物中取样,这些算法被证明是低效的。在这种背景下,继而采用的Monte Carlo过渡马可夫链Monte Carlo(TMCMC)技术提供了一种更有效的替代办法。尽管最近对Bayesian更新和在各种学科中选择模型具有适用性,但是在以前的PDFS系统与目标远地点大不相同时,TMC可能需要大量调控调阶段,而以前的PDFsermission系统则需要大量调控调,因此,从最初分布的最初一组样本开始,例如根据可行区域的情况,TMCCMCML技术, 模拟的测算和测算的测算结果,通过测算的测算结果,测算结果,测算的测算结果的测测测测测测测测测测测为:,测测测测测测结果,测测结果,测测测测结果的测结果的测测结果的测测算结果,测测测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算的测算的测算的测算结果的测算的测算结果的测算的测算的测算结果的测算的测算的测算的测算的测算的测算的测算的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算结果的测算的测算的测算的测算的测算结果的测算结果的测算结果的测算结果的测算结果的测算的测算结果的测算的测算的测算的测算的测算的测算的测算的测算的测算的测