We build a functorial pipeline for persistent homology. The input to this pipeline is a filtered simplicial complex indexed by any finite metric lattice and the output is a persistence diagram defined as the M\"obius inversion of its birth-death function. We adapt the Reeb graph edit distance to each of our categories and prove that both functors in our pipeline are $1$-Lipschitz making our pipeline stable. Our constructions generalize the classical persistence diagram and, in this setting, the bottleneck distance is strongly equivalent to the edit distance.
翻译:我们为持久性同系物建造了一条输油管管道。 输油管的输入是一个过滤的简易复合体, 以任何有限的公吨值为索引, 输出是一个持续性图, 被定义为 M\“ obius ” 转换其生死功能。 我们把Reeb 图形编辑的距离调整到我们每一个类别, 并证明我们管道中的两个杀菌者都是$$- Lipschitz, 使得我们的管道稳定。 我们的构造将经典的持久性图作概括化, 在这种背景下, 瓶颈距离与编辑距离完全等同 。