360-degree streaming videos can provide a rich immersive experiences to the users. However, it requires an extremely high bandwidth network. One of the common solutions for saving bandwidth consumption is to stream only a portion of video covered by the user's viewport. To do that, the user's viewpoint prediction is indispensable. In existing viewport prediction methods, they mainly concentrate on the user's head movement trajectory and video saliency. None of them consider navigation information contained in the video, which can turn the attention of the user to specific regions in the video with high probability. Such information can be included in video subtitles, especially the one in 360-degree virtual tourism videos. This fact reveals the potential contribution of video subtitles to viewport prediction. Therefore, in this paper, a subtitle-based viewport prediction model for 360-degree virtual tourism videos is proposed. This model leverages the navigation information in the video subtitles in addition to head movement trajectory and video saliency, to improve the prediction accuracy. The experimental results demonstrate that the proposed model outperforms baseline methods which only use head movement trajectory and video saliency for viewport prediction.


翻译:360度流动视频可以向用户提供丰富的亲身体验。 但是,它需要一个极高的带宽网络。 节省带宽消费的常见解决方案之一是只流流用户浏览门户所覆盖的部分视频。 要做到这一点,用户的观点预测是必不可少的。 在现有的浏览门户预测方法中,这些视频主要集中于用户头部运动轨迹和视频突出度。 没有一个视频考虑视频中的导航信息,这些信息可以将用户的注意力转向视频中的特定区域,概率很高。 这些信息可以包含在视频字幕中, 特别是360度虚拟旅游视频中的视频。 这一事实显示了视频字幕对观看门户预测的潜在贡献。 因此, 在本文中, 提出了一个360度虚拟旅游视频视频视频以字幕为基础的视图预测模型。 该模型除了利用视频字幕中的导航信息来提高视频的准确性外, 还将利用视频字幕中的导航信息来引导移动轨迹和视频突出度, 实验结果显示, 拟议的模型将超出基线方法的完善, 仅使用头部移动轨迹和视频突出度来进行视图预测。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
14+阅读 · 2020年12月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员