Large language models (LLMs) have pushed the limits of natural language understanding and exhibited excellent problem-solving ability. Despite the great success, most existing open-source LLMs (\eg, LLaMA-2) are still far away from satisfactory for solving mathematical problem due to the complex reasoning procedures. To bridge this gap, we propose \emph{MetaMath}, a fine-tuned language model that specializes in mathematical reasoning. Specifically, we start by bootstrapping mathematical questions by rewriting the question from multiple perspectives without extra knowledge, which results in a new dataset called {MetaMathQA}. Then we fine-tune the LLaMA-2 models on MetaMathQA. Experimental results on two popular benchmarks (\ie, GSM8K and MATH) for mathematical reasoning demonstrate that MetaMath outperforms a suite of open-source LLMs by a significant margin. Our MetaMath-7B model achieves $66.4\%$ on GSM8K and $19.4\%$ on MATH, exceeding the state-of-the-art models of the same size by $11.5\%$ and $8.7\%$. Particularly, {MetaMath-70B} achieves an accuracy of $82.3\%$ on {GSM8K}, slightly better than {GPT-3.5-Turbo}. We release the {MetaMathQA} dataset, the {MetaMath} models with different model sizes and the training code for public use.
翻译:暂无翻译