This paper proposes an efficient symbolic-numeric method to compute the integrals in the successive Galerkin approximation (SGA) of the Hamilton-Jacobi-Bellman (HJB) equation. A solution of the HJB equation is first approximated with a linear combination of the Hermite polynomials. The coefficients of the combination are then computed by iteratively solving a linear equation, which consists of the integrals of the Hermite polynomials multiplied by nonlinear functions. The recursive structure of the Hermite polynomials is inherited by the integrals, and their recurrence relations can be computed by using the symbolic computation of differential operators. By using the recurrence relations, all the integrals can be computed from a part of them that are numerically evaluated. A numerical example is provided to show the efficiency of the proposed method compared to a standard numerical integration method.
翻译:《哈密顿-雅各比-贝尔曼方程连续Galerkin逼近的符号数值积分计算》本文提出了一种有效的符号数值方法,用于计算连续 Galerkin逼近(SGA)哈密顿-雅各比-贝尔曼(HJB)方程中的 积分。HJB方程的解首先用 厄米多项式的线性组合近似表示。 然后通过逐步解决线性方程来计算组合的系数,其中包括 将 厄米多项式乘以非线性函数所得到的积分。 递归结构 将被积函数的 的厄米多项式所继承,差分运算符的符号计算可以用于计算它们 的递归关系。 使用递归关系,所有的积分都可以从 其中的一 部分数值评估所计算出来。 通过使用标准的数值积分方法,提供了一个 数值示例,以展示所提出的方法的高效性。