Unmanned aerial vehicles (UAVs), especially fixed-wing ones that withstand strong winds, have great potential for oceanic exploration and research. This paper studies a UAV-aided maritime data collection system with a fixed-wing UAV dispatched to collect data from marine buoys. We aim to minimize the UAV's energy consumption in completing the task by jointly optimizing the communication time scheduling among the buoys and the UAV's flight trajectory subject to wind effect. The conventional successive convex approximation (SCA) method can provide efficient sub-optimal solutions for collecting small/moderate data volume, whereas the solution heavily relies on trajectory initialization and has not explicitly considered wind effect, while the computational/trajectory complexity both become prohibitive for the task with large data volume. To this end, we propose a new cyclical trajectory design framework with tailored initialization algorithm that can handle arbitrary data volume efficiently, as well as a hybrid offline-online (HO2) design that leverages convex stochastic programming (CSP) offline based on wind statistics, and refines the solution by adapting online to real-time wind velocity. Numerical results show that our optimized trajectory can better adapt to various setups with different target data volume and buoys' topology as well as various wind speed/direction/variance compared with benchmark schemes.


翻译:本文研究无人驾驶航空飞行器(UAVs)的无人驾驶航空飞行器(UAVs),特别是承受强风的固定翼飞行器,具有巨大的海洋勘探和研究潜力。本论文研究无人驾驶航空辅助海洋数据收集系统,该系统配备了固定翼无人驾驶航空飞行器,负责收集来自海洋浮标的数据。我们的目标是通过共同优化浮标和无人驾驶航空飞行轨迹之间的通信时间安排,尽量减少无人驾驶航空飞行器在完成任务时的耗能,以风效应为条件,共同优化浮标和无人驾驶航空飞行器飞行轨迹之间的通信时间安排。常规连续连续的 convex近似(SCA)方法可以为收集小型/中度数据量提供高效的亚最佳方案,而解决方案则严重依赖轨迹初始化,未明确考虑风效应,而计算/轨迹复杂度对大型数据量的任务都变得令人厌烦。为此,我们提出了一个新的周期性轨迹设计框架,其初始化算法能够高效处理任意数据量,以及混合离线(HO2)设计,该设计基于风统计离线利用 convex 随机编程编程(CSP),通过在线调整解决方案,改进解决方案,使之适应实时适应实时与实时风速和轨迹速度,与不同水平/速度,可以优化,将各种轨道/速度,以显示。

0
下载
关闭预览

相关内容

【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
106+阅读 · 2022年3月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员