In this article, we study the binomial mixture model under the regime that the binomial size $m$ can be relatively large compared to the sample size $n$. This project is motivated by the GeneFishing method (Liu et al., 2019), whose output is a combination of the parameter of interest and the subsampling noise. To tackle the noise in the output, we utilize the observation that the density of the output has a U shape and model the output with the binomial mixture model under a U shape constraint. We first analyze the estimation of the underlying distribution F in the binomial mixture model under various conditions for F. Equipped with these theoretical understandings, we propose a simple method Ucut to identify the cutoffs of the U shape and recover the underlying distribution based on the Grenander estimator (Grenander, 1956). It has been shown that when $m = {\Omega}(n^{2/3})$, the identified cutoffs converge at the rate $O(n^{-1/3})$. The $L_1$ distance between the recovered distribution and the true one decreases at the same rate. To demonstrate the performance, we apply our method to varieties of simulation studies, a GTEX dataset used in (Liu et al., 2019) and a single cell dataset from Tabula Muris.


翻译:在本文中,我们研究了二进制混合物模式,即二进制规模与样本规模相比,百万美元可能相对较大。该项目的动机是GeneFishing方法(Liu等人,2019年),其产出是利益参数和子抽样噪音的组合。为了解决产出中的噪音,我们使用这样的观察,即产出的密度为U形状,用U形状限制的二进制混合物模式模拟产出。我们首先分析F不同条件下的二进制混合物模型F基本分布F的估计值。根据这些理论理解,我们提出了一个简单的方法,即U形状的截断值和根据Grenander测算器(Grenander,1956年)恢复基本分布。我们发现,当输出的密度为 U = omega} (n ⁇ 2/3 }) 时,确定的截值将集中在 $O (n)-1/3} 。我们首先分析F 的二进制混合物模型模型中F,在F 以这些理论理解为基础,我们提出了一个简单的方法,即U型形状的距离为$1美元,在GFSetro 20的模型中,我们所使用的数据率的模型中,我们用了一个模拟模型中的数据率将一个模型中, 用于一个模拟模型中的数据率。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2021年5月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员