This study aims to identify a set of indicators to estimate cognitive workload using a multimodal sensing approach and machine learning. A set of three cognitive tests were conducted to induce cognitive workload in twelve participants at two levels of task difficulty (Easy and Hard). Four sensors were used to measure the participants' physiological change, including, Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and blood oxygen saturation (SpO2). To understand the perceived cognitive workload, NASA-TLX was used after each test and analysed using Chi-Square test. Three well-know classifiers (LDA, SVM, and DT) were trained and tested independently using the physiological data. The statistical analysis showed that participants' perceived cognitive workload was significantly different (p<0.001) between the tests, which demonstrated the validity of the experimental conditions to induce different cognitive levels. Classification results showed that a fusion of ECG and EDA presented good discriminating power (acc=0.74) for cognitive workload detection. This study provides preliminary results in the identification of a possible set of indicators of cognitive workload. Future work needs to be carried out to validate the indicators using more realistic scenarios and with a larger population.


翻译:这项研究旨在确定一套指标,以便利用多式联运和机器学习的方法估计认知工作量; 进行了一套三次认知测试,使12名参与者在两个任务难度层次(轻松和艰苦)下承担认知工作量; 使用四个传感器测量参与者的生理变化,包括电动心电图(ECG)、电极活动(EDA)、呼吸(RESP)和血液氧饱和(SpO2),为了了解认知认知工作量,在每次测试后都使用美国航天局-TLXLX,并使用Chi-Square测试进行分析; 利用生理数据独立培训和测试3名知名分类员(LDA、SVM和DT); 统计分析表明,参与者认为的认知工作量在测试之间差别很大(p <0.0001),这显示了实验条件对诱导出不同认知水平的有效性; 分类结果表明,ECG和EDA的结合为认知工作量的检测提供了良好的区别力量(acc=0.74); 3名知名分类员(LDA、SVM和DT)经过培训并进行了独立测试; 统计分析表明,在确定一套可能的认知工作量指标方面有初步结果; 今后的工作需要用更现实的情景来验证指标。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员