Federated learning is a distributed machine learning approach in which a single server and multiple clients collaboratively build machine learning models without sharing datasets on clients. A challenging issue of federated learning is data heterogeneity (i.e., data distributions may differ across clients). To cope with this issue, numerous federated learning methods aim at personalized federated learning and build optimized models for clients. Whereas existing studies empirically evaluated their own methods, the experimental settings (e.g., comparison methods, datasets, and client setting) in these studies differ from each other, and it is unclear which personalized federate learning method achieves the best performance and how much progress can be made by using these methods instead of standard (i.e., non-personalized) federated learning. In this paper, we benchmark the performance of existing personalized federated learning through comprehensive experiments to evaluate the characteristics of each method. Our experimental study shows that (1) there are no champion methods, (2) large data heterogeneity often leads to high accurate predictions, and (3) standard federated learning methods (e.g. FedAvg) with fine-tuning often outperform personalized federated learning methods. We open our benchmark tool FedBench for researchers to conduct experimental studies with various experimental settings.


翻译:联邦学习是一种分布式的机器学习方法,一个单一服务器和多个客户在不分享客户数据集的情况下合作建立机器学习模式,联邦学习的一个棘手问题是数据异质性(即,不同客户的数据分布可能不同)。为了解决这个问题,许多联邦学习方法旨在个人化联合会学习,并为客户建立最佳模式。虽然现有的研究经验评估了自己的方法,但这些研究的实验环境(例如,比较方法、数据集和客户设置)各不相同,而个人化的联邦学习方法往往导致高准确的预测,不清楚哪些个人化的联邦学习方法取得最佳的成绩,以及使用这些方法而不是标准(即,非个人化)联邦化的联邦学习可以取得多大进展。在本文件中,我们通过综合实验来衡量现有个人化联合会学习的绩效,以评价每种方法的特点。我们的实验研究表明:(1)没有支持性方法,(2)大的数据异质性往往导致高准确的预测,(3)标准联邦化学习方法(例如,FedAv,非个人化)通过使用标准的实验性实验方法,经常进行个人化实验性化的实验性实验性研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员